

叶绿体 3-磷酸甘油酸激酶(PGK)试剂盒说明书

(货号: BP10212F 紫外法 48样 有效期: 3个月)

一、指标介绍:

叶绿体 3-磷酸甘油酸激酶(PGK)是卡尔文循环中的关键酶,催化 3-磷酸甘油酸和 ATP 反应产生 1,3-二磷酸甘油酸,后者在 3-磷酸甘油醛脱氢酶和 NADH 作用下产生 3-磷酸甘油醛和 NAD+,通过测定 NADH 的下降量,进而得到 3-磷酸甘油酸激酶的活性大小。

二、试剂盒的组成和配制:

试剂组分	试剂规格	存放温度	注意事项
提取液一	液体 50mL×1 瓶	4℃保存	
提取液二	液体 50mL×1 瓶	4℃保存	
试剂一	粉剂 1 瓶	-20℃避光 保存	1. 开盖前注意使粉体落入底部 (可手动甩一甩); 2. 加入 2.2mL 蒸馏水溶解备用; 3. 保存周期与试剂盒有效期相 同。
试剂二	粉剂 3 支	4℃保存	每支: 1. 临 用 前 8000g 4 ° C 离 心 2mim 使试剂落入管底; 2. 加入 0.4mL 蒸馏水溶解备用。 用不完的试剂分装后-20°C保存,禁 止反复冻融,三天内用完。
试剂三	液体 1 支	-20℃保存	1. 临用前 8000g 4°C 离心 2mim 使试剂落入管底; 2. 加 1.1mL 蒸馏水溶解备用; 3. 保存周期与试剂盒有效期相同。
试剂四	液体 35mL×1 瓶	4℃保存	
试剂五	粉剂 1 支	-20℃保存	1. 临用前 8000g 4°C 离心 2mim 使试剂落入管底; 2. 加入 1.1mL 蒸馏水溶解备用; 3. 保存周期与试剂盒有效期相同。

三、实验器材:

研钵(匀浆机)、冰盒(制冰机)、台式离心机、可调式移液枪、水浴锅(烘箱、培养箱、金属浴)、 1ml 石英比色皿、离心管、紫外分光光度计、震荡仪、蒸馏水(去离子水、超纯水均可)。

三、指标测定:

建议先选取 1-3 个差异大的样本(例如不同类型或分组)进行预实验,熟悉操作流程,根据预实验结果确定或调整样本浓度,以防造成样本或试剂不必要的浪费!

1、样本提取:

称取约 0.1g 植物组织样本,加入 1mL 提取液一,快速冰浴匀浆后于 4 ℃,1600rpm 离心 5min,弃沉淀,取上清再 4 ℃,5000rpm 离心 15min,弃上清留沉淀,向沉淀中加 1mL 提取液二,强力涡旋震

网址: www.bpelisa.com

荡 15s,置于冰上(或冰箱)在 4° C孵育 15min, 4° C,13000rpm 离心 5min,取上清测定叶绿体中 3-磷酸甘油酸激酶(PGK)的酶活性。提示:整个叶绿体的提取过程须保持 4° C低温环境。

【注】: 若增加样本量,可按照组织质量(g):提取液体积(mL)为1:5~10的比例进行提取。

2、检测步骤:

- ① 紫外分光光度计预热 30min,调节波长至 340nm,设定温度 25℃,蒸馏水调零。
- ② 所有试剂解冻至室温(25℃)。
- ③ 在 1mL 石英比色皿 (光径 1cm) 中依次加入:

(35)			
试剂组分(μL)	测定管		
样本	80		
试剂一	40		
试剂二	20		
试剂三	20		
试剂四	600		
混匀, 室温 (25℃) 条件下,孵育 10min		
试剂五	20		
轻轻混匀, 室温 (25℃) 条件下, 30s 时于 340nm			

轻轻混匀, 室温 (25°C) 条件下, 30s 时于 340nm 处读取吸光值 A1, 10min 后再读取 A2, ΔA=A1-A2。

- 【注】1.若ΔA 的值在零附近,可以适当延长反应时间到 20min 后读取 A2,改变后的反应时间需代入计算公式 重新计算。或适当加大样本量(如 100μL,则试剂四相应减少),则改变后的加样体积需代入计算公式重新计算。
 - 2. 若下降趋势不稳定,可以每隔 20S 读取一次吸光值,选取一段线性下降的时间段来参与计算,相对应的 A 值也代入计算公式重新计算。
 - 3. 若起始值 A1 太大如超过 2(如颜色较深的植物叶片,一般色素较高,则起始值相对会偏高),可以适当减少样本加样量,则改变后的加样体积需代入计算公式重新计算。或向待测样本中加少许活性炭混匀静置 5min 后 12000rpm, 4℃离心 10min,上清液用于检测:
 - 4. 若 ΔA 的值大于 0.5,则需减少反应时间(如减少至 5min),或减少样本量(如 20 μL),则改变后的反应时间 T 和样本量 V1 需代入计算公式重新计算。

五、结果计算:

1、按照样本质量计算:

酶活定义:每克组织每分消耗 1 nmol 的 NADH 定义为一个酶活力单位。 NADH-GPK(nmol/min/g 鲜重)=[ΔA÷(ε×d)×V2×10⁹]÷(W×V1÷V)÷T=156.8×ΔA÷W

2、按样本蛋白浓度计算:

单位定义: 每毫克组织蛋白在每分钟内氧化 1nmol NADH 定义为一个酶活力单位。 NADH-GPK(nmol/min/mg prot)=[ΔA÷(ε×d)×V2×10⁹]÷(V1×Cpr) ÷T=156.8×ΔA÷Cpr

ε---NADH 摩尔消光系数, 6.22×10³ L/mol/cm; d---比色皿光径, 1cm; V---加入提取液体积, 1mL; V1---加入样本体积, 0.08mL;

网址: www.bpelisa.com

V2---反应体系总体积, 0.78mL=7.8×10⁻⁴L; T---反应时间, 10min;

W---样本质量, g。

Cpr---样本蛋白质浓度,mg/mL;建议使用本公司的 BCA 蛋白含量检测试剂盒。

网址: www.bpelisa.com